Course Type	Course Code	Name of Course	L	Т	P	Credit
DE	NCED522	Pavement Geotechnics	3	0	0	3

Course Objective

To provide knowledge and equip the students with fundamental knowledge about the geotechnical aspects associated with the design and construction of pavements, techniques of subsurface exploration, and characterization parameters.

Learning Outcomes

- > Fundamental understanding of pavement distresses and geotechnical aspects of pavement construction.
- ➤ Different techniques of subsurface exploration before pavement construction and geotechnical inputs in pavement designs.
- ➤ Knowledge of resilient and permanent strain response of subgrade soils and granular materials under repeated loadings with influencing factors.
- > Application and methods used for design of unpaved and paved roads with Geosynthetics.

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome
1	Introduction: Pavement system and types of	6L	Fundamental knowledge about the
	pavements; Geotechnical components and		pavement system, its different
	their functions; Distresses in pavements;		components and geotechnical factors
	Geotechnical influences on distresses in		related to the design, construction and
	flexible and rigid pavements; Key		performance of pavements
	geotechnical issues in pavement performance.		
2	Geotechnical Exploration and Testing for	6L	Knowledge about different techniques
	Pavements		of sub-surface exploration at the site
	Geophysical methods; In-situ testing methods		before pavement construction.
	in context of pavement construction;		
	Correlations with pavement design parameters;		
	Borings and Samplings for pavement		
	constructions: Test pits; frequency and spacing.		
	Pavement design and Geotechnical aspects	12L	Knowledge and understanding about
3	Design Elements; Equivalent single wheel load;		the geotechnical characterization
	Equivalent axle load factor; Design		parameters, design methodologies for
	methodologies and geotechnical inputs:		pavements and FEM for pavement
	Subgrade Characterization: CBR; Stabilometer		analysis and design.
	(R) Value; Modulus of Subgrade Reaction (k);		
	l l		

	Resilient Modulus (M_r) and correlation with		
	basic properties; Permanent deformation		
	characteristics.		
4	Deformation characteristics: Resilient and Permanent strain models: Influence of deviatoric and confining stress; compaction density, loading frequency; Unconsolidated and Consolidated Undrained cyclic response; pore water pressure variation and influence.		Understanding and knowledge about the response of subgrade soil to cyclic loading or repeated traffic loadings
5	Design with Geosynthetics: Empirical method: Modified CBR method; AASHTO (1993) procedure; Analytical method: Giraud and Noiray method; Laboratory method; Membrane encapsulated subgrade in paved and unpaved roads; Subgrade conditions with special treatments.		Learning different methods of pavement design with the addition of Geosynthetics.
	Total Contact Hours	42L	

Text Books

- 1. Bernardo, C. (2018). "Geotechnics of Roads: Fundamentals", CRC Press, London, UK: 9781032059495
- 2. Nishantha, B. and Manjriker, G. (2018). "Geotechnical Aspects of Pavement Engineering", Momentum Press, New York, ISBN-13, 978-1-60650-540-3 (print) ISBN-13: 978-1-60650-541-0 (e-book).

References Books

- 1. Geotechnical Aspects of Pavements, FHWA NHI-05-037, Federal Highway Administration, U.S. Department of Transportation.
- 2. Berg, R.R., Christopher, B.R., and Perkins, S., 2000. "Geosynthetics Reinforcement of the Aggregate Base/Subbase Courses of Pavement Structures", Geosynthetics Materials Association, County Road B, West Roseville.
- 3. Koerner, R.M. (2005). "Designing with Geosynthetics", Pearson Prentice Hall, New Jersey, ISBN 0-13-145415-3.
- 4. IRC 37-2018. "Guidelines for the Design of Flexible Pavements", Indian Road Congress, New Delhi.
- 5. AASHTO., 1993. AASHTO guide for design of pavement structures: Washington, D.C.